Random gluing polygons

Sergei Chmutov, Ohio State University at Mansfield
We consider an oriented closed surface obtained by randomly glued \$n\$ polygons along their sides. The total number of sides are supposed to be an even number $\$ \mathrm{~N} \$$ and the resulting surface can be encoded by a random permutation $\$ \backslash$ gamma of $\$[\mathrm{~N}] \$$. We show that $\$ \backslash$ gamma\$ is distributed asymptotically (as $\$ \mathrm{~N} \backslash$ to $\backslash i n f t y \$$) uniformly among either even or odd permutations depending on parities of $\$ \mathrm{~N} \$$ and $\$ \mathrm{n} \$$. Then we study the distribution of the genus of the surface obtained and show that asymptotically it is normal Gaussian distribution with mean $\$(\mathrm{~N} / 2-\mathrm{n}-\backslash \log \mathrm{N}) / 2 \$$ and variance $\$(\backslash \log$ N)/4\$.

This is a joint work with Boris Pittel.

